A Monte Carlo Study of the 6.4 keV Emission at the Galactic Center

نویسندگان

  • Michael J. Fromerth
  • Fulvio Melia
  • Denis A. Leahy
چکیده

Strong fluorescent Fe line emission at 6.4 keV has been observed from the Sgr B2 giant molecular cloud located in the Galactic Center region. The large equivalent width of this line and the lack of an apparent illuminating nearby object indicate that a time-dependent source, currently in a low-activity state, is causing the fluorescent emission. It has been suggested that this illuminator is the massive black hole candidate, Sgr A*, whose X-ray luminosity has declined by an unprecedented six orders of magnitude over the past 300 years. We here report the results of our Monte Carlo simulations for producing this line under a variety of source configurations and characteristics. These indicate that the source may in fact be embedded within Sgr B2, although external sources give a slightly better fit to the data. The weakened distinction between the internal and external illuminators is due in part to the instrument response function, which accounts for an enhanced equivalent width of the line by folding some of the continuum radiation in with the intrinsic line intensity. We also point out that although the spectrum may be largely produced by Kα emission in cold gas, there is some evidence in the data to suggest the presence of warm (∼ 10 K) emitting material near the cold cloud. NSF Graduate Fellow. Sir Thomas Lyle Fellow and Miegunyah Fellow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation

Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method usin...

متن کامل

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography

Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...

متن کامل

Image Optimization in Single Photon Emission Computed Tomography by Hardware Modifications with Monte Carlo Simulation

Introduction: In Single Photon Emission Computed Tomography (SPECT), the projection data used for image reconstruction are distorted by several factors, including attenuation and scattering of gamma rays, collimator structure, data acquisition method, organ motion, and washout of radiopharmaceuticals. All these make reconstruction of a quantitative SPECT image very difficult. Simulation of a SP...

متن کامل

The Impact of Nano-Sized Gold Particles on the Target Dose Enhancement Based on Photon Beams Using by Monte Carlo Method

Objective(s): In this study we evaluate the impact of the different aspects of Gold Nano-Particles (GNPs) on the target absorptive Dose Enhancement Factor (DEF) during external targeted radiotherapy with photon beams ranging from kilovolt to megavolt energies using Monte Carlo simulation. Methods: We have simulated the interaction of photon beams wi...

متن کامل

The Origin of X-ray Emission from a Galactic Center Molecular Cloud: Low Energy Cosmic Ray Electrons

The Galactic center region near l≈ 0.2 hosts a mixture of nonthermal linear filaments and thermal radio continuum features associated with the radio Arc. Chandra observations of this region reveal an X-ray filament and diffuse emission with an extent of roughly 60′′ × 2′′ and 5′ × 3′, respectively. The X-ray filament lies at the edge of the nonthermal radio filaments and a dense molecular shell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000